Modelos Tobit Bayesianos Jerárquicos: aplicación al análisis de la distancia de viaje

The objective of travel distance models is to better understand travel behavior so that policies can be implemented for reducing travel and with that the externalities of transport such as air pollution, congestion, and crashes. Hierarchical Bayesian models offer a flexible framework to analyze trav...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Aguero-Valverde, Jonathan
Formato: Online
Lenguaje:eng
Publicado: Universidad de Costa Rica 2017
Materias:
Acceso en línea:https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/27196
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
_version_ 1804238541752893440
author Aguero-Valverde, Jonathan
author_facet Aguero-Valverde, Jonathan
author_sort Aguero-Valverde, Jonathan
collection Revista Ingeniería (RI)
description The objective of travel distance models is to better understand travel behavior so that policies can be implemented for reducing travel and with that the externalities of transport such as air pollution, congestion, and crashes. Hierarchical Bayesian models offer a flexible framework to analyze travel behavior by allowing the study of short term decisions of the activity and travel choices as well as long term decisions of residential and employment location. Since travel distance is censored at zero for a significant fraction of the observations, parameter estimates obtained by conventional regression methods are biased. Consistent parameter estimates can be obtained by using the Tobit model. The purpose of this paper is to demonstrate the application of fully Bayesian Tobit hierarchical models to the analysis of travel distance; this with the goal of accommodating the multilevel and censored nature of the data.Results show that the hierarchical Tobit Model performs significantly better than the non-hierarchical model as measure by the Deviance and Deviance Information Criteria. Further, the highly significant variance at the individual and location levels, demonstrates the importance of using a multilevel approach.The distance traveled increases with years of study and job qualification. In addition, all the members of the household travel less than the householder and women travel less than men. Industry sectors also show significant differences in travel time: workers in the secondary and tertiary sectors travel farther than workers in the primary sector. Land price is significantly correlated with distance traveled in both residence and employment locations. 
first_indexed 2024-07-10T23:59:17Z
format Online
id INII-RI-article-27196
institution Instituto de Investigaciones en Ingeniería (INII)
language eng
last_indexed 2024-07-10T23:59:17Z
publishDate 2017
publisher Universidad de Costa Rica
record_format ojs
spelling INII-RI-article-271962021-06-09T19:53:23Z Bayesian Hierarchical Tobit Models: an application to travel distance analysis Modelos Tobit Bayesianos Jerárquicos: aplicación al análisis de la distancia de viaje Aguero-Valverde, Jonathan Travel distance Bayesian Tobit hierarchical models residential location employment location Ubicación de la vivienda ubicación de lugar de trabajo modelos multinivel datos censurados The objective of travel distance models is to better understand travel behavior so that policies can be implemented for reducing travel and with that the externalities of transport such as air pollution, congestion, and crashes. Hierarchical Bayesian models offer a flexible framework to analyze travel behavior by allowing the study of short term decisions of the activity and travel choices as well as long term decisions of residential and employment location. Since travel distance is censored at zero for a significant fraction of the observations, parameter estimates obtained by conventional regression methods are biased. Consistent parameter estimates can be obtained by using the Tobit model. The purpose of this paper is to demonstrate the application of fully Bayesian Tobit hierarchical models to the analysis of travel distance; this with the goal of accommodating the multilevel and censored nature of the data.Results show that the hierarchical Tobit Model performs significantly better than the non-hierarchical model as measure by the Deviance and Deviance Information Criteria. Further, the highly significant variance at the individual and location levels, demonstrates the importance of using a multilevel approach.The distance traveled increases with years of study and job qualification. In addition, all the members of the household travel less than the householder and women travel less than men. Industry sectors also show significant differences in travel time: workers in the secondary and tertiary sectors travel farther than workers in the primary sector. Land price is significantly correlated with distance traveled in both residence and employment locations.  El objetivo de los modelos de distancia de viaje es entender el comportamiento de viajede los usuarios, de forma tal que se puedan implementar políticas para reducir la distancia de viaje y, con esto, externalidades del transporte tales como contaminación del aire, congestión y accidentes. Los modelos Bayesianos Jerárquicos ofrecen una metodología flexible para analizar el comportamiento de viaje al permitir el estudio tanto de las decisiones de corto plazo de la actividad y las selecciones de viaje así como las decisiones de largo plazo como la localización de la vivienda y el lugar de trabajo. Como la distancia de viaje está censurada en cero para una proporción importante de los datos, los parámetros obtenidos por medio de regresiones lineales convencionales están sesgados. Estimaciones no sesgadas de los parámetros pueden ser obtenidas usando modelos Tobit. El propósito de este artículo es demostrar la aplicación de modelos Tobit Bayesianos jerárquicos al análisis de la distancia de viaje, considerando la naturaleza multinivel y censurada de los datos.Los resultados muestran que el modelo Tobit Bayesiano jerárquico tiene un desempeñosignificativamente mejor que el modelo no jerárquico al medir la bondad de ajuste la Devianza t el Criterio de Información de la Devianza. Más aún, la varianza es estadísticamente muy significativa tanto para el nivel individual como para el nivel de ubicación, lo cual demuestra laimportancia de usar una metodología multinivel. Universidad de Costa Rica 2017-05-18 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Article Artículo application/pdf text/html https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/27196 10.15517/jte.v27i1.27196 Ingeniería; Vol. 27 No. 1 (2017): January-June 2017; 97-111 Ingeniería; Vol. 27 Núm. 1 (2017): Enero-Junio 2017; 97-111 Ingeniería; Vol. 27 N.º 1 (2017): Enero-Junio 2017; 97-111 2215-2652 1409-2441 eng https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/27196/29053 https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/27196/32316 Derechos de autor 2017 Jonathan Aguero-Valverde
spellingShingle Travel distance
Bayesian Tobit hierarchical models
residential location
employment location
Ubicación de la vivienda
ubicación de lugar de trabajo
modelos multinivel
datos censurados
Aguero-Valverde, Jonathan
Modelos Tobit Bayesianos Jerárquicos: aplicación al análisis de la distancia de viaje
title Modelos Tobit Bayesianos Jerárquicos: aplicación al análisis de la distancia de viaje
title_alt Bayesian Hierarchical Tobit Models: an application to travel distance analysis
title_full Modelos Tobit Bayesianos Jerárquicos: aplicación al análisis de la distancia de viaje
title_fullStr Modelos Tobit Bayesianos Jerárquicos: aplicación al análisis de la distancia de viaje
title_full_unstemmed Modelos Tobit Bayesianos Jerárquicos: aplicación al análisis de la distancia de viaje
title_short Modelos Tobit Bayesianos Jerárquicos: aplicación al análisis de la distancia de viaje
title_sort modelos tobit bayesianos jerarquicos aplicacion al analisis de la distancia de viaje
topic Travel distance
Bayesian Tobit hierarchical models
residential location
employment location
Ubicación de la vivienda
ubicación de lugar de trabajo
modelos multinivel
datos censurados
topic_facet Travel distance
Bayesian Tobit hierarchical models
residential location
employment location
Ubicación de la vivienda
ubicación de lugar de trabajo
modelos multinivel
datos censurados
url https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/27196
work_keys_str_mv AT aguerovalverdejonathan bayesianhierarchicaltobitmodelsanapplicationtotraveldistanceanalysis
AT aguerovalverdejonathan modelostobitbayesianosjerarquicosaplicacionalanalisisdeladistanciadeviaje